The Einstein-kähler Metric with Explicit Formulas on Some Non-homogeneous Domains

نویسندگان

  • WEIPING YIN
  • WENJUAN ZHANG
چکیده

In this paper we describe the Einstein-Kähler metric for the Cartan-Hartogs domains which are the special case of the Hua domains. First of all, we reduce the Monge-Ampère equation for the metric to an ordinary differential equation in the auxiliary function X = X(z, w). This differential equation can be solved to give an implicit function in X. Secondly, for some cases, we obtained explicit forms of the complete Einstein-Kähler metrics on Cartan-Hartogs domains which are the non-homogeneous domains. Let M be a complex manifold. Then a Hermitian metric ∑ i,j gi,jdz i ⊗ dz defined on M is said to be Kähler if the Kähler form Ω = √−1∑i,j gi,jdz ∧ dz is closed. The Ricci form is given by −∂∂ log det(gi,j). If the Ricci form of the Kähler metric is proportional to the Kähler form, the metric is called Einstein-Kähler. If the manifold is not compact, we require the metric to be complete. Clearly for a noncompact complex manifold to admit such a metric, it is necessary that there exists a volume form, the negative of whose Ricci tensor defines a complete Kähler metric. The volume form of this Kähler metric must be equivalent to the original volume form. If we normalize the metric by requiring the scalar curvature to be minus one, then the Einstein-Kähler metric is unique. Cheng and Yau[CY] proved that any bounded domain D which is the intersection of domain with C boundary admits a complete Einstein-Kähler. Without any regularity assumption on the domain D, Mok and Yau[MY] proved that the complete Einstein-Kähler metric always exists. This Einstein-Kähler metric is given by ED(z) := ∑ ∂g ∂zi∂zj dzidzj , where g is an unique solution to the boundary problem of the Monge-Ampère equation: ⎧⎨ ⎩ det ( ∂g ∂zi∂zj ) = e z ∈ D, g = ∞ z ∈ ∂D, We call g the generating function of ED(z). It is obvious that if one determines g explicitly, then the Einstein-Kähler metric is also determined explicitly. Therefore if one would like to compute the Einstein-Kähler metric explicitly, it suffices to compute the generating function g in explicit formula. The explicit formulas for the Einstein-Kähler metric, however, are only known on homogeneous domains. In his famous paper [Wu], H.Wu points out that among the four classical invariant metrics(i.e. the Bergman metric, Carathéodory metric, ∗Received April 3, 2003; accepted for publication September 8, 2003. Research supported in part by NSF of China (Grant No. 10171051 and 10171068) and NSF of Beijing (Grant No. 1002004 and 1012004). †Department of Mathematics, Capital Normal University, Beijing 100037, P. R. China ([email protected]). ‡ [email protected] or [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-potentials and Kähler–Einstein metrics on flag manifolds, II

For a homogeneous space G/P , where P is a parabolic subgroup of a complex semisimple group G, an explicit Kähler–Einstein metric on it is constructed. The Einstein constant for the metric is 1. Therefore, the intersection number of the first Chern class of the holomorphic tangent bundle of G/P coincides with the volume of G/P with respect to this Kähler–Einstein metric, thus enabling us to com...

متن کامل

The Kähler–einstein Metric for Some Hartogs Domains over Bounded Symmetric Domains

We study the complete Kähler-Einstein metric of a Hartogs domain Ω̃ built on an irreducible bounded symmetric domain Ω, using a power N of the generic norm of Ω. The generating function of the Kähler-Einstein metric satisfies a complex Monge-Ampère equation with boundary condition. The domain Ω̃ is in general not homogeneous, but it has a subgroup of automorphisms, the orbits of which are paramet...

متن کامل

(kähler-)ricci Flow on (kähler) Manifolds

One of the most interesting questions in Riemannian geometry is that of deciding whether a manifold admits curvatures of certain kinds. More specifically, one might want to know whether some given manifold admits a canonical metric, i.e. one with constant curvature of some form (sectional curvature, scalar curvature, etc.). (This will in fact have many topological implications.). One such probl...

متن کامل

Quaternionic Kähler and Spin(7) Metrics Arising from Quaternionic Contact Einstein Structures

We construct left invariant quaternionic contact (qc) structures on Lie groups with zero and non-zero torsion and with non-vanishing quaternionic contact conformal curvature tensor, thus showing the existence of non-flat quaternionic contact manifolds. We prove that the product of the real line with a seven dimensional manifold, equipped with a certain qc structure, has a quaternionic Kähler me...

متن کامل

1 3 Ju n 20 08 HOMOGENEOUS PARA - KÄHLER EINSTEIN MANIFOLDS

A para-Kähler manifold can be defined as a pseudoRiemannian manifold (M, g) with a parallel skew-symmetric paracomplex structures K, i.e. a parallel field of skew-symmetric endomorphisms with K = Id or, equivalently, as a symplectic manifold (M, ω) with a bi-Lagrangian structure L, i.e. two complementary integrable Lagrangian distributions. A homogeneous manifold M = G/H of a semisimple Lie gro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004